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[Vijayakumar & Schaal 2000] 
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Distribution over functions 
 

f (x)~GP (m (x), k (x,x′)) 

Fully specified by its  
mean and covariance function 
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Posterior Distribution 

f∗|x∗,x,y ~ N (m    ,K    ) post  post  

m      = K∗K  y T -1 
post  

K      = K∗∗− K∗ K   K∗ 
-1 T 

post  K  = k (x , x ) i,j i j 

f (x)~GP (m (x), k (x,x′)) 
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Prior Distribution 

f∗~ N (0,K∗∗) 
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[Vijayakumar & Schaal 2000] 

45,000  
data points  

7 DOF, 
21 input 

dimensions 

Robot 
dynamics 

LARGE 
DATA SET 



Posterior Distribution 

Entries computed with covariance function 
 

Size: N x N (N: number of data points) 
 K 3 Inverse needed: O(N  ) 
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f∗|x∗,x,y ~ N (m    ,K    ) post  post  

m      = K∗K  f T -1 
post  

K      = K∗∗− K∗ K   K∗ 
-1 T 

post  

K  = k (x , x ) i,j i j 

f (x)~GP (m (x), k (x,x′)) 
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Time 
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Tensor Train Decomposition 

[Oseledets 2011] 
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K 
-1 

New covariance  
function 

(A   B)  = A     B -1 -1 -1 Tensor Algebra 

K K  = I -1 

k (x,x′) 

Alternating Linear  
Scheme 

[Dolgov & Savostyanov 2014] 
[Saatçi 
2011] 
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