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PROCESSES

Distribution over functions

0 . Fully specified by its
mean and covariance function

fX)~GP(m (X), kK (XX))
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Mpos = KIK

f(x)~GgP(m(x), k (XX)) c
= k(X/, Xj) Kpost = K**_ K* K K*
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Posterior Distribution

f*lx*: 'S W(mpost:Kpost)
Mpos = KIKf

Kpost — K**_ I(;rk/@K*

Entries computed with covariance function
K Size: N x N (N: number of data points)

Inverse needed: O(N 3 F0~ G (M), K (XX)

K= k(X X))
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TENSOR METHODS
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Tensor Train Decomposition

[Oseledets 2011]
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[Dolgov & Savostyanov 2014]
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