Cooperative Passivity-Based Control for End-Effector Synchronisation

Oscar de Groot, Tamás Keviczky, Laurens Valk Delft University of Technology

Outline

- Introduction
- Passivity
- Cooperative r-Passivity-Based Control
- Experimental Results
- Conclusions

Introduction

Introduction

Passivity

Synchronise end-effectors of mechanical systems in general environments.

Cooperative rPBC

Experimental Results

Introduction

Passivity

Cooperative rPBC

TUDelft

Experimental Results

Conclusions

Synchronise end-effectors of mechanical systems in general environments.

Introduction

Passivity

Cooperative rPBC

TUDelft

Experimental Results

Conclusions

Synchronise end-effectors of mechanical systems in general environments.

Introduction

Passivity

Cooperative rPBC Experimental Results

Conclusions

Possible applications

- Sort and packing problems
- Multi-vehicle package delivery
- Autonomous platoons
- Spacecraft alignment

. . .

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

Synchronise end-effectors of mechanical systems in general environments.

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

Problem Definition

IDA-PBC

Network Scheme

Agent Scheme

Simulation Results

TUDelft

Problem Definition

IDA-PBC

Network Scheme

Agent Scheme

Simulation Results

Problem Definition

IDA-PBC

Network Scheme

Agent Scheme

Simulation Results

TUDelft

Problem Definition

IDA-PBC

Network Scheme

Agent Scheme

Simulation Results

Problem Definition

IDA-PBC

Network Scheme

Agent Scheme

Simulation Results

Cooperative Passivity-Based Control

• Zero energy \rightarrow Control objective

Passivity

Notion of Passivity

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

Supplied energy is either stored or dissipated

$$\dot{V} + S = \boldsymbol{\tau}^T \boldsymbol{y}$$

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

• No energy supply

 $\dot{V} = -S \le 0$ (Lyapunov)

 $\dot{V} = -S \le 0$ (Lyapunov)

Introduction

Passivity

UDelft

Experimental Results

Conclusions

No energy supply

Introduction

Passivity

Experimental Results

Conclusions

No energy supply $\dot{V} = -S \le 0$ (Lyapunov)

Introduction

Passivity

Cooperative rPBC

۲

Experimental Results

Conclusions

No energy supply

 $\dot{V} = -S \le 0$ (Lyapunov)

Zero energy \rightarrow Cooperative control objective

Introduction

Passivity

Cooperative rPBC

•

Experimental Results

Conclusions

What if delays are present?

Introduction

Passivity

Cooperative rPBC Experimental Results

Conclusions

• No description of the energy in the network.

Introduction

Passivity

Cooperative rPBC

Experimental Results

- No description of the energy in the network.
- **Solution:** Convert network signals to energy packages

Scattering Transformation

Introduction

Passivity

Cooperative rPBC Experimental Results

Conclusions

24

Introduction

Passivity

Cooperative rPBC Experimental Results

$$\lim_{t\to\infty}\mathbf{y}_j(t-T_{ji})-\mathbf{y}_i=\mathbf{0}$$

Introduction

Passivity

Cooperative rPBC

Experimental Results

٠

Output Selection

Problem Definition

Network Scheme

Agent Scheme

Simulation Results

Synchronisation of end-effector coordinates

Introduction

Passivity

Cooperative rPBC

Experimental Results

Introduction

Passivity

Cooperative rPBC

Experimental Results

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

Outputs

- Fulfil our objectives with coordinates
- Are passive with velocities

- Encode velocities and coordinates into the output r
- $r = \dot{z} + \lambda z$
- If $\dot{z} \rightarrow 0$, then $r \rightarrow \lambda z$

r-Passive Agents

Introduction

Passivity

Cooperative rPBC

Experimental Results

r-Passive Agents

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

• Find a control function $\hat{\boldsymbol{\tau}}_i(\boldsymbol{\tau}_i)$ such that

$$S_i = \boldsymbol{\tau}_{c,i}^T \mathbf{r}_i - \dot{V}_i$$
 (r-passivity)

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

r-Passive Agents

• Find a control function $\hat{\boldsymbol{\tau}}_i(\boldsymbol{\tau}_i)$ such that

 $S_{i} = \boldsymbol{\tau}_{c,i}^{T} \mathbf{r}_{i} - \dot{V}_{i} \quad (\mathbf{r}\text{-passivity})$ $V_{i} = \frac{1}{2} \mathbf{r}_{i}^{T} \mathbf{r}_{i} + \frac{1}{2} \gamma_{i} \lambda \mathbf{z}_{i}^{T} \mathbf{z}_{i}, \qquad S_{i} = \gamma_{i} \dot{\mathbf{z}}_{i}^{T} \dot{\mathbf{z}}_{i}.$ \downarrow $\boldsymbol{\tau}_{c,i} = \dot{\mathbf{r}}_{i} + \gamma_{i} \dot{\mathbf{z}}_{i} = \ddot{\mathbf{z}}_{i} + (\lambda + \gamma_{i}) \dot{\mathbf{z}}_{i}$

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

r-Passive Agents

• For fully actuated systems, solvable:

$$\begin{aligned} \boldsymbol{\tau}_{i} &= \mathbf{M}_{i} \mathbf{J}_{i}^{\dagger} \left(\boldsymbol{\tau}_{c,i} - \mathbf{K}_{z,i} \dot{\mathbf{q}}_{i} \right) + \frac{\partial H_{i}}{\partial \mathbf{q}_{i}}, \\ \mathbf{K}_{z,i} &= \mathbf{J}_{i} \left((\lambda + \gamma_{i}) \mathbf{I}_{n,i} - \mathbf{M}_{i}^{-1} \dot{\mathbf{M}}_{i} \right) + \dot{\mathbf{J}}_{i} \end{aligned}$$

Dimensionality of cooperative tasks

Local Dynamics

Introduction

- Passivity
- Cooperative rPBC
- Experimental Results
- Conclusions

Subtask optimisation

Passivity

Cooperative rPBC

Experimental Results

Introduction

Cooperative rPBC

Experimental

Conclusions

Passivity

Results

Cooperative Controls

- Gradient descend
 - Objectives
 - Consensus
 - Formations
 - Leader-Follower Control

Summarizing Remarks

We developed

Introduction

Passivity

Cooperative rPBC

Experimental Results

- A scheme for synchronisation with r-passive systems
- A controller that renders agents r-passive

Summarizing Remarks

Introduction

Passivity

Cooperative rPBC

•

Experimental Results

- No knowledge required of other agent dynamics
 - Interconnection becomes trivial

Introduction

Passivity

Cooperative rPBC

Simulation

Experimental Results

ŤUDelft

44

Experimental Results

Formation Experiment

Introduction

Passivity

Cooperative rPBC

Experimental Results

Formation Experiment

Passivity

Cooperative rPBC

Experimental Results

Conclusions

200 – 400 ms ○)))⊙))) ○)))) ◇ ○ 5%

Formation Trajectories

Conclusions

Introduction

Passivity

Cooperative rPBC Experimental Results

- We derived a cooperative controller
 - For heterogeneous, nonlinear systems
 - That does not need knowledge of other agent's dynamics;
 - For formation control with or without leaders;
 - With inherent stability in the presence of communication delays and packet loss.

Future work

Introduction

Passivity

Cooperative rPBC Experimental Results

- Underactuated systems
- MPC for r-passivity
- Collision avoidance

Thank you for you attention

Backup

Performance with Network Effects

Introduction

Passivity

Cooperative rPBC

Experimental Results

- Multiple experiments
 - Delays
 - Packet loss

Performance with Network Effects

Introduction

Passivity

Cooperative rPBC

Experimental Results

Conclusions

Multiple experiments

- Delays

Comparison with State-of-the-Art (200-400 ms)

Comparison with State-of-the-Art (1000-1200 ms)

