

Data informativity for system analysis and control part 1: analysis

Jaap Eising, Henk J. van Waarde, Harry L. Trentelman, and M. Kanat Camlibel University of Groningen

39th Benelux Meeting on Systems and Control

The main observation:

Consider the discrete-time, linear time-invariant system:

$$x(t+1) = A_s x(t) + B_s u(t).$$

The main observation:

Consider the discrete-time, linear time-invariant system:

$$x(t+1) = A_s x(t) + B_s u(t).$$

Suppose that A_s and B_s are *unknown*, but that we have access to measurements on this system. We want to resolve whether the system (A_s, B_s) is stabilizable.

The main observation:

Consider the discrete-time, linear time-invariant system:

$$x(t+1) = A_s x(t) + B_s u(t).$$

Suppose that A_s and B_s are *unknown*, but that we have access to measurements on this system. We want to resolve whether the system (A_s, B_s) is stabilizable. We can only conclude that the system is stabilizable if *all* systems compatible with the measurements are stabilizable.

Contents

1. Motivation

2. Informativity Framework

3. Results on informativity for analysis

4. Conclusions

Not in this talk: Data-driven control, controller design, disturbances, noise.

Informativity Framework

Three important parts.

Model Class Σ

Contains the 'true' system.

Model Class Σ

Contains the 'true' system.

Data \mathcal{D}

Generated by the 'true' system. Set of all systems that are compatible: $\Sigma_{\mathcal{D}}$.

Model Class Σ

Contains the 'true' system.

Data \mathcal{D}

Generated by the 'true' system. Set of all systems that are compatible: $\Sigma_{\mathcal{D}}$.

Property \mathcal{P}

Any system-theoretic property. Set of all systems that have this property: $\Sigma_{\mathcal{P}}$.

Model Class Σ

Contains the 'true' system.

Data \mathcal{D}

Generated by the 'true' system. Set of all systems that are compatible: $\Sigma_{\mathcal{D}}$.

Property \mathcal{P}

Any system-theoretic property. Set of all systems that have this property: $\Sigma_{\mathcal{P}}$.

We say that the data \mathcal{D} are *informative* for property \mathcal{P} if $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}}$.

Model Class Σ

Contains the 'true' system.

Data \mathcal{D}

Generated by the 'true' system. Set of all systems that are compatible: $\Sigma_{\mathcal{D}}$.

Property \mathcal{P}

Any system-theoretic property. Set of all systems that have this property: $\Sigma_{\mathcal{P}}$.

We say that the data \mathcal{D} are *informative* for property \mathcal{P} if $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}}$.

Informativity problem

Provide necessary and sufficient conditions on ${\cal D}$ under which the data are informative for property ${\cal P}.$

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$.

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$. Suppose that we measure the state and input for time 0 up to T.

$$U_{-} := \begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}, \quad X := \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix}, \\ X_{-} := \begin{bmatrix} x(0) & x(1) & \cdots & x(T-1) \end{bmatrix}, \quad X_{+} := \begin{bmatrix} x(1) & x(2) & \cdots & x(T) \end{bmatrix}.$$

Then the set of all systems compatible with the data is equal to:

$$\Sigma_{\mathcal{D}} = \{ (A, B) \mid X_+ = AX_- + BU_- \}$$

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$. Suppose that we measure the state and input for time 0 up to T.

$$U_{-} := \begin{bmatrix} u(0) & u(1) & \cdots & u(T-1) \end{bmatrix}, \quad X := \begin{bmatrix} x(0) & x(1) & \cdots & x(T) \end{bmatrix}, \\ X_{-} := \begin{bmatrix} x(0) & x(1) & \cdots & x(T-1) \end{bmatrix}, \quad X_{+} := \begin{bmatrix} x(1) & x(2) & \cdots & x(T) \end{bmatrix}.$$

Then the set of all systems compatible with the data is equal to:

$$\Sigma_{\mathcal{D}} = \{ (A, B) \mid X_+ = AX_- + BU_- \}$$

Consider stabilizability, and let:

$$\Sigma_{\mathcal{P}} = \{ (A, B) \mid (A, B) \text{ is stabilizable} \}$$

With data (U_{-}, X) as before and sets:

$$\Sigma_{\mathcal{D}} = \{ (A, B) \mid X_+ = AX_- + BU_- \}$$

$$\Sigma_{\mathcal{P}} = \{ (A, B) \mid (A, B) \text{ is stabilizable.} \}$$

Informativity for stabilizability

The data (U_{-}, X) are informative for stabilizability if $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}}$.

Let the 'true' system be (A_s, B_s) and data (U_-, X) as before.

Let the 'true' system be (A_s, B_s) and data (U_-, X) as before.

Suppose now that we are interested in stabilization by static state feedback: Find K such that $A_s + B_s K$ is stable.

Let the 'true' system be (A_s, B_s) and data (U_-, X) as before.

Suppose now that we are interested in stabilization by static state feedback: Find K such that $A_s + B_s K$ is stable.

We say the data \mathcal{D} is informative for property $\mathcal{P}(K)$ if there exists a K such that $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}(K)}$.

Let the 'true' system be (A_s, B_s) and data (U_-, X) as before.

Suppose now that we are interested in stabilization by static state feedback: Find K such that $A_s + B_s K$ is stable.

We say the data \mathcal{D} is informative for property $\mathcal{P}(K)$ if there exists a K such that $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}(K)}$.

Informativity problem for control

Provide necessary and sufficient conditions on \mathcal{D} under which there exists a K such that the data are informative for property $\mathcal{P}(K)$.

Control design problem

If \mathcal{D} are informative for $\mathcal{P}(K)$, find K such that $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}(K)}$.

Results on informativity for analysis

- 11

Data-driven Hautus test.

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$.

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$. With data (U_-, X) as before and sets:

$$\begin{split} \Sigma_{\mathrm{i/s}} &= \{(A,B) \mid X_+ = AX_- + BU_-\},\\ \Sigma_{\mathrm{stab}} &= \{(A,B) \mid (A,B) \text{ is stabilizable}\},\\ \Sigma_{\mathrm{cont}} &= \{(A,B) \mid (A,B) \text{ is controllable}\}. \end{split}$$

Data-driven Hautus test.

Consider the class of discrete-time, linear time-invariant input/state systems, containing 'true' system: $x(t+1) = A_s x(t) + B_s u(t)$.

Theorem (Data-driven Hautus tests)

The data (U_{-}, X) are informative for controllability if and only if $\operatorname{rank}(X_{+} - \lambda X_{-}) = n \quad \forall \lambda \in \mathbb{C}.$

Similarly, the data (U_-, X) are informative for stabilizability if and only if $\operatorname{rank}(X_+ - \lambda X_-) = n \quad \forall \lambda \in \mathbb{C} \text{ with } |\lambda| \ge 1.$

The data (U_-, X) are informative for controllability if and only if $\operatorname{rank}(X_+ - \lambda X_-) = n \quad \forall \lambda \in \mathbb{C}.$

The data (U_-, X) are informative for controllability if and only if $\operatorname{rank}(X_+ - \lambda X_-) = n \quad \forall \lambda \in \mathbb{C}.$

Let n=2 and

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ u_0 = 1, \ u_1 = 0.$$

The data (U_-, X) are informative for controllability if and only if $\operatorname{rank}(X_+ - \lambda X_-) = n \quad \forall \lambda \in \mathbb{C}.$

Let n=2 and

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ u_0 = 1, \ u_1 = 0.$$

This implies that

$$X_{+} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ X_{-} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \implies X_{+} - \lambda X_{-} = \begin{bmatrix} 1 & -\lambda \\ 0 & 1 \end{bmatrix}$$

The data (U_-, X) are informative for controllability if and only if $\operatorname{rank}(X_+ - \lambda X_-) = n \quad \forall \lambda \in \mathbb{C}.$

Let n=2 and

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ u_0 = 1, \ u_1 = 0.$$

Indeed:

$$\Sigma_{\mathbf{i}/\mathbf{s}} = \left\{ \left(\begin{bmatrix} 0 & a_1 \\ 1 & a_2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

Observability

Given C, consider the class of autonomous discrete-time, linear time-invariant systems, containing 'true' system: $x(t+1) = A_s x(t)$, y(t) = C x(t).

Given C, consider the class of autonomous discrete-time, linear time-invariant systems, containing 'true' system: $x(t+1) = A_s x(t)$, y(t) = C x(t). With state measurements X as before we have sets:

$$\begin{split} \Sigma_{\mathsf{s}} &= \{A \mid X_{+} = AX_{-}\},\\ \Sigma_{\mathsf{stab}} &= \{A \mid (C, A) \text{ is observable}\},\\ \Sigma_{\mathsf{cont}} &= \{A \mid (C, A) \text{ is detectable}\}. \end{split}$$

Observability

Given C, consider the class of autonomous discrete-time, linear time-invariant systems, containing 'true' system: $x(t+1) = A_s x(t)$, y(t) = C x(t).

Theorem (Data-driven Hautus tests)

The data X are informative for observability with C if and only if ker $C \subseteq \operatorname{im} X_{-}$ and for all $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^{n}$ we have $\begin{pmatrix} X_{+} - \lambda X_{-} \\ CX_{-} \end{pmatrix} v \implies X_{-}v = 0.$

The data X are informative for detectability with C if and only if ker $C \subseteq \operatorname{im} X_{-}$ and for all $\lambda \in \mathbb{C}$ with $|\lambda| \ge 1$ and $v \in \mathbb{C}^n$ we have

$$\begin{pmatrix} X_+ - \lambda X_- \\ C X_- \end{pmatrix} v \implies X_- v = 0.$$

Example

Let
$$C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$
 and suppose that $X_{-} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X_{+} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Let
$$C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$
 and suppose that $X_{-} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X_{+} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$.

The data X are informative for observability with C if and only if ker $C \subseteq \operatorname{im} X_{-}$ and for all $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^{n}$ we have $\begin{pmatrix} X_{+} - \lambda X_{-} \\ C X_{-} \end{pmatrix} v \implies X_{-}v = 0.$

Let
$$C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$
 and suppose that $X_{-} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $X_{+} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$.

The data X are informative for observability with C if and only if ker $C \subseteq \operatorname{im} X_{-}$ and for all $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^{n}$ we have $\begin{pmatrix} X_{+} - \lambda X_{-} \\ C X_{-} \end{pmatrix} v \implies X_{-}v = 0.$

Indeed ker
$$C \subseteq \operatorname{im} X_{-}$$
 and $\begin{pmatrix} X_{+} - \lambda X_{-} \\ C X_{-} \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -\lambda \\ -\lambda & 0 \\ 0 & 0 \end{bmatrix}$.

— 16

Conclusions

> We have introduced a framework for dealing with informativity problems.

- > We have introduced a framework for dealing with informativity problems.
- > We resolved analysis problems regarding controllability, stabilizability, observability and detectability.

- > We have introduced a framework for dealing with informativity problems.
- > We resolved analysis problems regarding controllability, stabilizability, observability and detectability.
- > Some examples illustrated these results.

- > We have introduced a framework for dealing with informativity problems.
- > We resolved analysis problems regarding controllability, stabilizability, observability and detectability.
- > Some examples illustrated these results.

Based on: H. J. Van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel, "Data informativity: a new perspective on data-driven analysis and control," *IEEE Transactions on Automatic Control.*

Extensions

- > Data-driven control.
- > Different model classes:
 - Nonlinear systems.
 - Disturbances.
 - Parametrization (e.g. network structure).
- > Different data:
 - Noise.
 - Input/output measurements
- > Different properties.

Questions?